
Verifying the Rust Standard Library
Using Verus
Elanor Tang, Travis Hance (MPI), Chris Hawblitzel (Microsoft),
Natalie Neamtu, Jake Ginesin, and Bryan Parno
Carnegie Mellon University

2025 New England Systems Verification Day

Why Verify the Rust Standard Library?

Goal: Provide safety and correctness guarantees

2

Memory
safety
errors

…except in unsafe code
Rust standard library

unsafe

unsafe

unsafe 20
CVEs

Icon created by SANB from Noun Project

Verification tools must…

3

Provide good
automation

Provide “Rust-like”
proof environment

Reason about raw pointer
operations, among others

Large
(500,000 SLOC)

Evolving Implemented with unsafe
code

The Rust standard library is…

Challenges and Tool Motivation

Verus does all of this

Icons created by Larea and Waldis Production from Noun Project

Rust: Ownership, References, and Borrowing
• Each value in Rust has a variable that’s its owner.
• Create an alias by making a reference.
• Called borrowing. Done with & operator.
• Think of a reference &T as (T, ptr).

4

ref: &T

Rust shared reference

owner: T

val

Heap

Stack A reference can be shared (immutable)
or mutable, which determines the

read/write access allowed.

The lifetime of a reference cannot be
longer than the owner’s lifetime.

Enforced by the Rust
borrow-checker.

unsafe {

 let (p, Tracked(mut points_to)) = allocate::<u32>(4);

}

Verus: Ownership Ghost Permissions

5(example simplified for demonstration purposes)

Signifies ownership
ghost permission

• Ownership ghost permissions track the evolving state of a
resource in unsafe code.
• Type-check permissions with Rust’s borrow-checker to ensure

safety.

Track information about
what the pointer points to

ptr: *mut T
value: T

unsafe {

 let (p, Tracked(mut points_to)) = allocate::<u32>(4);
 ptr_mut_write(p, Tracked(&mut points_to), 5);

}

Ownership Ghost Permissions: Mutability
Mutability of permission reference must match mutability of
the pointer operation.
• Signature of ptr_mut_write requires a mutable reference, to

ensure exclusive access to memory.

6(example simplified for demonstration purposes)

unsafe {

 let (p, Tracked(mut points_to)) = allocate::<u32>(4);
 ptr_mut_write(p, Tracked(&points_to), 5); // FAILS

}

Ownership Ghost Permissions: Mutability
Mutability of permission reference must match mutability of
the pointer operation.
• Signature of ptr_mut_write requires a mutable reference, to

ensure exclusive access to memory.
• Enforced by Rust’s borrow-checker.

7(example simplified for demonstration purposes)

unsafe {

 let (p, Tracked(mut points_to)) = allocate::<u32>(4);
 ptr_mut_write(p, Tracked(&mut points_to), 5);

 deallocate(p, 4, Tracked(points_to));

}

Ownership Ghost Permissions: Lifetime
Permission is valid for exactly as long as the allocation’s lifetime.
• Signature of deallocate requires ownership transfer of
points_to.

8(example simplified for demonstration purposes)

unsafe {

 let (p, Tracked(mut points_to)) = allocate::<u32>(4);
 ptr_mut_write(p, Tracked(&mut points_to), 5);

 deallocate(p, 4, Tracked(points_to));

 ptr_mut_write(p, Tracked(&mut points_to), 5); // FAILS
}

Ownership Ghost Permissions: Lifetime
Permission is valid for exactly as long as the allocation’s lifetime.
• Signature of deallocate requires ownership transfer of
points_to.
• Rust borrow-checker forbids references after that: it is no

longer in scope.

9(example simplified for demonstration purposes)

Challenge #1: Handling Pointer Provenance
Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

• Spatial

• Temporal

• Mutability

10

allocation

root

ptr1

ptr2

Challenge #1: Handling Pointer Provenance
Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

• Spatial

• Temporal

• Mutability

ü

ü

ü
ptr: *mut T

value: T

alloc_start: usize
alloc_length: usizeprovenance:

Extend ownership ghost permissions
with provenance information

Extended ownership ghost permission
11

Addressed by Rust’s
borrow-checker on the
lifetime and mutability
of ghost permisions

pub unsafe fn add(ptr: *const T, count: usize) -> *const T

Example: ptr::add

Advance ptr: *const T by by count elements of type ptr: *const T count T

12

If the computed offset is non-zero, then

pub unsafe fn add(ptr: *const T, count: usize) -> *const T

Example: ptr::add
ptr

must have a valid allocation (not freed).ptr

allocation

computed offset

Memory range between and the result must
be within bounds.

ptr

13

pub unsafe fn add_verus<T>(ptr: *const T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> *const T

If the computed offset is non-zero, then

Example: ptr::add
ptr

must have a valid allocation (not freed).ptr

allocation

computed offset

Memory range between and the result must
be within bounds.

alloc_start: usize
alloc_length: usize

provenance:

ptr

Tells us that this memory has not
been deallocated

14

pub unsafe fn add_verus<T>(ptr: *const T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> *const T

If the computed offset is non-zero, then

Example: ptr::add
ptr

must have a valid allocation (not freed).ptr

allocation

computed offset

Memory range between and the result must
be within bounds.

alloc_start: usize
alloc_length: usize

provenance:

ptr

perm.provenance() == ptr.provenance Tells us that this memory has not
been deallocated

15

pub unsafe fn add_verus<T>(ptr: *const T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> *const T

ptr.in_bounds(perm.provenance.alloc_start(),
 perm.provenance.alloc_start() + perm.provenance.alloc_length(),
 count)

If the computed offset is non-zero, then

Example: ptr::add
ptr

must have a valid allocation (not freed).ptr

allocation

computed offset

Memory range between and the result must
be within bounds.

alloc_start: usize
alloc_length: usize

provenance:

ptr

perm.provenance() == ptr.provenance Tells us that this memory has not
been deallocated

16

pub unsafe fn add_verus<T>(ptr: *const T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) -> *const T

ptr.in_bounds(perm.provenance.alloc_start(),
 perm.provenance.alloc_start() + perm.provenance.alloc_length(),
 count)

If the computed offset is non-zero, then

Example: ptr::add
ptr

must have a valid allocation (not freed).ptr

allocation

computed offset

Memory range between and the result must
be within bounds.

alloc_start: usize
alloc_length: usize

provenance:

ptr

perm.provenance() == ptr.provenance Tells us that this memory has not
been deallocated

The only provenance information we needed to
add was alloc_start and alloc_length

17

Challenge #2: Shared Reference SMT Encoding

Encoding A

Add ptr_info(v: &T) function to get
pointer information as needed
ØSimpler for users
ØHarder to track and update

pointer information internally

Encoding B

Use &T only when you actually need the
pointer
ØStraightforward to implement
ØOften unavoidable to have &T when

we do not need the pointer
18

&T (T, ptr)

SMT encodingRust type

&T T

SMT encodingRust type

Think of &T as (T, ptr)
• In most cases, we only care about T

ref: &T

owner: T
val

Heap
Stack

Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code
Need to use Verus versions of functions

19

add(ptr, count) add_verus(ptr, count, Tracked(&perm))

*ptr = 5 ptr_mut_write(p, Tracked(&mut perm), 5)

#[with_ghost_arg(Tracked(perm): Tracked<&PointsToRaw>)]
pub unsafe fn add<T>(ptr: *const T, count: usize) -> *const T

Solution: Support in progress for attribute-based syntax

*block *ptr_ref(block, Tracked(&perm))

Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code
Need to use Verus versions of functions

20

add(ptr, count) add_verus(ptr, count, Tracked(&perm))

*ptr = 5 ptr_mut_write(p, Tracked(&mut perm), 5)

#[with_ghost_arg(Tracked(perm): Tracked<&PointsToRaw>)]
pub unsafe fn add<T>(ptr: *const T, count: usize) -> *const T

Solution: Support in progress for attribute-based syntax

*block *ptr_ref(block, Tracked(&perm))Need to do this in a way that still enables type-checking,
so we can keep borrow-checking our permissions

21

Vec::new

RawVec::new

RawVecInner::new_inAlignment::of

Alignment::new

usize::is_power
_of_two

usize::count_ones

intrinsics::ctpop

Unique::from
_non_null

Alignment::
as_nonzero

transmute::<Alignment,
NonZero<usize>>

Cap::new_
unchecked

NonNull::without
_provenance

NonZero::get

transmute_
unchecked::

<NonZero<T>, T>

ptr::without
_provenance

ptr::without
provenance

mut

transmute::<usize,
*mut T>

Verified

Specified

Unspecified

str::run_utf8_validation

str::split_at_unchecked

str::next_code_point_verus

Results

22

Vec::new

RawVec::new

RawVecInner::new_inAlignment::of

Alignment::new

usize::is_power
_of_two

usize::count_ones

intrinsics::ctpop

Unique::from
_non_null

Alignment::
as_nonzero

transmute::<Alignment,
NonZero<usize>>

Cap::new_
unchecked

NonNull::without
_provenance

NonZero::get

transmute_
unchecked::

<NonZero<T>, T>

ptr::without
_provenance

ptr::without
provenance

mut

transmute::<usize,
*mut T>

Verified

Specified

Unspecified

str::run_utf8_validation

str::split_at_unchecked

str::next_code_point_verus

Results

assert(ch == (((x & 0x07) as u32) << 18) |
 (((y & 0x3f) as u32) << 12) |
 (((z & 0x3f) as u32) << 6) |
 ((w & 0x3f) as u32)) by (bit_vector)
 requires
 x >= 0xF0,
 init == (x & 0x7Fu8 >> (2 as u8)) as u32,
 y_z == (((y & 0b0011_1111) as u32) << 6) | (z & 0b0011_1111) as u32,
 ch == (init & 7) << 18 | ((y_z << 6) | (w & 0b0011_1111) as u32),
 ;

• Rely on Rust’s borrow-checker and ownership
ghost types.
• Straightforward pointer provenance model.
• Capable of verifying complex, real-world code.

23

Elanor Tang
elanor@cmu.edu

Thank you!

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE2140739. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ptr: *mut T
value: T

alloc_start: usize
alloc_length: usize

provenance:

ownership ghost
permission

Rust borrow-
checker + SMT

Vec::new

RawVec::new

RawVecInner::new_inAlignment::of

Alignment::new

usize::is_power
_of_two

usize::count_ones

intrinsics::ctpop

Unique::from
_non_null

Alignment::
as_nonzero

transmute::<Alignment,
NonZero<usize>>

Cap::new_
unchecked

NonNull::without
_provenance

NonZero::get

transmute_
unchecked::

<NonZero<T>, T>

ptr::without
_provenance

ptr::without
provenance

mut

transmute::<usize,
*mut T>

Recap

