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Why Verify the Rust Standard Library?

20

CVEs

Rust standard library
...except in unsafe code

Goal: Provide safety and correctness guarantees

eeeeeeeee d by SANB from Noun Project



Challenges and Tool Motivation

The Rust standard library is...

Evolving Large Implemented with unsafe
(500,000 SLOC) code

Verification tools must...

Provide “Rust-like” Provide good Reason about raw pointer
proof environment automation operations, among others

Verus does all of this

Icons created by Larea and Waldis Production from Noun Project



Rust: Ownership, References, and Borrowing

e Each value in Rust has a variable that’s its owner.

\

* Create an alias by making a reference.
* Called borrowing. Done with & operator.
* Think of a reference &T as (T, ptr).

Enforced by the Rust
borrow-checker.

Stack A reference can be shared (immutable)
owner: T or mutable, which determines the

] Heap i
read/write access allowed.
b val )
/

The lifetime of a reference cannot be
longer than the owner’s lifetime.

Rust shared reference



Verus: Ownership Ghost Permissions

* Ownership ghost permissions track the evolving state of a
resource in unsafe code.

* Type-check permissions with Rust’s borrow-checker to ensure

safety.
unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
Rl .
Signifies ownership ! ptr:"mut T
ghost permission L _V_alu_e:_T_ _\\,'; Track information about

what the pointer points to

}

(example simplified for demonstration purposes) >



Ownership Ghost Permissions: Mutability

Mutability of permission reference must match mutability of
the pointer operation.

* Signature of ptr_mut_write requires a mutable reference, to
ensure exclusive access to memory.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, . points_to), 5);

s

(example simplified for demonstration purposes)



Ownership Ghost Permissions: Mutability

Mutability of permission reference must match mutability of
the pointer operation.

* Signature of ptr_mut_write requires a mutable reference, to
ensure exclusive access to memory.

* Enforced by Rust’s borrow-checker.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (:boints_to), 5);

s

(example simplified for demonstration purposes)



Ownership Ghost Permissions: Lifetime

Permission is valid for exactly as long as the allocation’s lifetime.
* Signature of deallocate requires ownership transfer of

points_to.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (&mut points_to), 5);
deallocate(p, 4, (Doints_to));

s

(example simplified for demonstration purposes)



Ownership Ghost Permissions: Lifetime

Permission is valid for exactly as long as the allocation’s lifetime.

* Signature of deallocate requires ownership transfer of
points_to.

 Rust borrow-checker forbids references after that: itis no
longer in scope.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (&mut points_to), 5);
deallocate(p, 4, (points_to));

ptr_mut_write(p, <I&i§t pointé;£5>, 5);

}

(example simplified for demonstration purposes)



Challenge #1: Handling Pointer Provenance

Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

Spatial alloc‘ation
m
Temporal /
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utabili
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Challenge #1: Handling Pointer Provenance

Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

. Extend ownership ghost permissions
with provenance information

v'Spatial

==

vTemporal FTTTTTTTTTTTTOTT OIS .

- ptr: *mut T
vMutability \

value: T
Addressed by Rust’s alloc_start: usi;e
borrow-checker on the alloc_length: usize
lifetime and mutability « o T /
of ghost permisions T oo m T

provenance:

e o S S S S O e .y
om i —

A Y
Y4

Extended ownership ghost permission
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Example: ptr: :add

pub unsafe fn add(ptr: *const T, count: usize) —> xconst T

\. Advance ptr: *const T by count elementsoftype T
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allocation
A

Example: ptr::add — N
plte: p =~ y ,

ptr computed offset

pub unsafe fn add(ptr: *const T, count: usize) —> xconst T

If the computed offset is non-zero, then
c ptr must have avalid allocation (not freed).

e Memory range between ptr and the result must
be within bounds.
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allocation
A

Example: ptr::add — N
pte: p =~ y ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T

If the computed offset is non-zero, then If PP \:
a ptr must have avalid allocation (not freed). : .

A N NS S SN NS S RS S S

Tells us that this memory has not
been deallocated

e Memory range between ptr and the result must
be within bounds.
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allocation
A

Example: ptr::add — N
plte: p — ' ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T

L e —————————— \

If the computed offset is non-zero, then '{provenance: =f alloc_start: usize ‘: |

v @ ptr musthave avalid allocation (not freed). ! \_alloc_length: usize ;|
N o e e e /

perm.provenance() == ptr.provenance Ml W REL ol neiiey 1nas ok

been deallocated

e Memory range between ptr and the result must
be within bounds.
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allocation
A

Example: ptr::add — N
plte: p =~ y ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T’

L e ———————————— \

If the computed offset is non-zero, then '{provenance: :' alloc_start: usize E I

v @ ptr musthave avalid allocation (not freed). : \_alloc_length: usize |,
N e e e e e e o /

perm.provenance() == ptr.provenance Tells us that this memory has not

been deallocated

v/ e Memory range between ptr and the result must
be within bounds.

ptr.in_bounds(perm.provenancesalloc_start()>
perm.provenanceNalloc_start()/+ perm.provenance<@lloc_length(Jy

count)
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Example: ptr: :add

The only provenance information we needed to
addwasalloc_startandalloc_length
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Challenge #2: Shared Reference SMT Encoding

Stack
Think of &Tas (T, ptr) owner: T Heap
* |n mostcases, we only care about T ( val
ref: &T
Encoding A Encoding B
&§T |——| T & | ——| (T, ptr)
Rust type SMT encoding Rust type SMT encoding
Add ptr_info(v: &T) function to get Use &T only when you actually need the
pointer information as needed pointer
» Simpler for users » Straightforward to implement
» Harder to track and update » Often unavoidable to have &T when

pointer information internally we do not need the pointer
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Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

Need to use Verus versions of functions

add(ptr, count) ==y add verus(ptr, count, (&perm))
xblock mmmm) xptr_ref(block, (&perm) )
xptr = 5 =y ptr_mut_write(p, (&mut perm), 5)

Solution: Support in progress for attribute-based syntax

#[with_ghost_arg(Tracked(perm): Tracked<&PointsToRaw>) ]
pub unsafe fn add<T>(ptr: *const T, count: usize) -> xconst T

19



Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

Need to do this in a way that still enables type-checking,
so we can keep borrow-checking our permissions




Results

B Verified

. Specified
. Unspecified

[ Vec: :new ]

[RawVeé::new]

/\

[str::run_utf8_validation:

[ str::split_at_unchecked :

[str::next_code_point_verus

~

Cap::new_
unchecked

Unique::from

[:Alignméht::of ] [RawVecInner::new_in‘
_non_null J

Alignment: :new

J

A\ 4

—

[

NonNull: :without
_provenance

|

p
usize::is_power

_of_two

\

~\

Alignment::

4\

NonZero: :get
[ J

ptr::without
_provenance

|

as_nonzero

(s

/

J

\ 4

\ 4

[ usize::count_one

\ 4

: N
transmute_ ptr::without
S ] unchecked: : _provenance_
<NonZero<T>, T> mut

J

[ intrinsics::ctpo

transmute: :<Alignment,
NonZero<usize>>

| |

VAR

transmute: :<usize,
xmut T>

[
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Results

assert(ch == (((x & 0x07) as u32) << 18) |
(((y & 0x3f) as u32) << 12) |
(((z & 0x3f) as u32) << 6) |
((w & 0x3f) as u32)) by (bit_vector)
requires
x >= 0xF0,

init == (x & Ox7Fu8 >> (2 as u8)) as u32,
y_z == (((y & 0b@011_1111) as u32) << 6) | (z & 0b0011_1111) as u32,
ch == (init & 7) << 18 | ((y_z << 6) | (w & ©b0011_1111) as u32),




Elanor Tang
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Reca p Thank you!

* Rely on Rust’s borrow-checker and ownership - - - - - __
ghost types.

e Straightforward pointer provenance model. Rust borrow-

* Capable of verifying complex, real-world code. checker+SMT

__________________ ~
RawVec: :new ‘/ \
*
r:"mutT
[ Alignment: o [ RawVecInner::new_in ] | pt Ut |
Ton . I value: T l
Unique::from Cap::new_ NonNull: :without |
_ _non_null unchecked _provenance | {‘---------------'----\I |
(L Atignment::new ] , l .1 alloc_start: usize 1,
| ptr::without provenance. 1 1
usize::is_power Alignment:: [NonZero :get | _provenance I ! a“oc len th' USize 1]
| \ L amocShg Uusize A
| transmute ([ ptr::without ) < A
[ usize::count ones ] unchecked _prOVenanCe_ ——————————————————
I = <NonZero<T>, T> L mut )
intrinsics::ctpop ] - - )
transmute::<Alignment, transmute::<usize,
NonZero<usize>> *mut T> J
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