Verifying the Rust Standard Library
Using Verus

Elanor Tang, Travis Hance (MPI), Chris Hawblitzel (Microsoft),
Natalie Neamtu, Jake Ginesin, and Bryan Parno

Carnegie Mellon University

2025 New England Systems Verification Day

Why Verify the Rust Standard Library?

20

CVEs

Rust standard library
...except in unsafe code

Goal: Provide safety and correctness guarantees

eeeeeeeee d by SANB from Noun Project

Challenges and Tool Motivation

The Rust standard library is...

Evolving Large Implemented with unsafe
(500,000 SLOC) code

Verification tools must...

Provide “Rust-like” Provide good Reason about raw pointer
proof environment automation operations, among others

Verus does all of this

Icons created by Larea and Waldis Production from Noun Project

Rust: Ownership, References, and Borrowing

e Each value in Rust has a variable that’s its owner.

\

* Create an alias by making a reference.
* Called borrowing. Done with & operator.
* Think of a reference &T as (T, ptr).

Enforced by the Rust
borrow-checker.

Stack A reference can be shared (immutable)
owner: T or mutable, which determines the

] Heap i
read/write access allowed.
b val)
/

The lifetime of a reference cannot be
longer than the owner’s lifetime.

Rust shared reference

Verus: Ownership Ghost Permissions

* Ownership ghost permissions track the evolving state of a
resource in unsafe code.

* Type-check permissions with Rust’s borrow-checker to ensure

safety.
unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
Rl .
Signifies ownership ! ptr:"mut T
ghost permission L _V_alu_e:_T_ _\\,'; Track information about

what the pointer points to

}

(example simplified for demonstration purposes) >

Ownership Ghost Permissions: Mutability

Mutability of permission reference must match mutability of
the pointer operation.

* Signature of ptr_mut_write requires a mutable reference, to
ensure exclusive access to memory.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, . points_to), 5);

s

(example simplified for demonstration purposes)

Ownership Ghost Permissions: Mutability

Mutability of permission reference must match mutability of
the pointer operation.

* Signature of ptr_mut_write requires a mutable reference, to
ensure exclusive access to memory.

* Enforced by Rust’s borrow-checker.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (:boints_to), 5);

s

(example simplified for demonstration purposes)

Ownership Ghost Permissions: Lifetime

Permission is valid for exactly as long as the allocation’s lifetime.
* Signature of deallocate requires ownership transfer of

points_to.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (&mut points_to), 5);
deallocate(p, 4, (Doints_to));

s

(example simplified for demonstration purposes)

Ownership Ghost Permissions: Lifetime

Permission is valid for exactly as long as the allocation’s lifetime.

* Signature of deallocate requires ownership transfer of
points_to.

 Rust borrow-checker forbids references after that: itis no
longer in scope.

unsafe {
let (p, (mut points_to)) = allocate::<u32>(4);
ptr_mut_write(p, (&mut points_to), 5);
deallocate(p, 4, (points_to));

ptr_mut_write(p, <I&i§t pointé;£5>, 5);

}

(example simplified for demonstration purposes)

Challenge #1: Handling Pointer Provenance

Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

Spatial alloc‘ation
m
Temporal /
M t blt root
utabili
y * ptrl

Challenge #1: Handling Pointer Provenance

Provenance captures what you are allowed to do with a pointer,
based on the source it was derived from.

. Extend ownership ghost permissions
with provenance information

v'Spatial

==

vTemporal FTTTTTTTTTTTTOTT OIS .

- ptr: *mut T
vMutability \

value: T
Addressed by Rust’s alloc_start: usi;e
borrow-checker on the alloc_length: usize
lifetime and mutability « o T /
of ghost permisions T oo m T

provenance:

e o S S S S O e .y
om i —

A Y
Y4

Extended ownership ghost permission
11

Example: ptr: :add

pub unsafe fn add(ptr: *const T, count: usize) —> xconst T

\. Advance ptr: *const T by count elementsoftype T

12

allocation
A

Example: ptr::add — N
plte: p =~ y ,

ptr computed offset

pub unsafe fn add(ptr: *const T, count: usize) —> xconst T

If the computed offset is non-zero, then
c ptr must have avalid allocation (not freed).

e Memory range between ptr and the result must
be within bounds.

13

allocation
A

Example: ptr::add — N
pte: p =~ y ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T

If the computed offset is non-zero, then If PP \:
a ptr must have avalid allocation (not freed). : .

A N NS S SN NS S RS S S

Tells us that this memory has not
been deallocated

e Memory range between ptr and the result must
be within bounds.

14

allocation
A

Example: ptr::add — N
plte: p — ' ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T

L e —————————— \

If the computed offset is non-zero, then '{provenance: =f alloc_start: usize ‘: |

v @ ptr musthave avalid allocation (not freed). ! _alloc_length: usize ;|
N o e e e /

perm.provenance() == ptr.provenance Ml W REL ol neiiey 1nas ok

been deallocated

e Memory range between ptr and the result must
be within bounds.

15

allocation
A

Example: ptr::add — N
plte: p =~ y ,

ptr computed offset

pub unsafe fn add_verus<T>(ptr: *xconst T, count: usize, Tracked(perm): Tracked<&PointsToRaw>) —> xconst T’

L e ———————————— \

If the computed offset is non-zero, then '{provenance: :' alloc_start: usize E I

v @ ptr musthave avalid allocation (not freed). : _alloc_length: usize |,
N e e e e e e o /

perm.provenance() == ptr.provenance Tells us that this memory has not

been deallocated

v/ e Memory range between ptr and the result must
be within bounds.

ptr.in_bounds(perm.provenancesalloc_start()>
perm.provenanceNalloc_start()/+ perm.provenance<@lloc_length(Jy

count)

16

Example: ptr: :add

The only provenance information we needed to
addwasalloc_startandalloc_length

17

Challenge #2: Shared Reference SMT Encoding

Stack
Think of &Tas (T, ptr) owner: T Heap
* |n mostcases, we only care about T (val
ref: &T
Encoding A Encoding B
&§T |——| T & | ——| (T, ptr)
Rust type SMT encoding Rust type SMT encoding
Add ptr_info(v: &T) function to get Use &T only when you actually need the
pointer information as needed pointer
» Simpler for users » Straightforward to implement
» Harder to track and update » Often unavoidable to have &T when

pointer information internally we do not need the pointer

18

Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

Need to use Verus versions of functions

add(ptr, count) ==y add verus(ptr, count, (&perm))
xblock mmmm) xptr_ref(block, (&perm))
xptr = 5 =y ptr_mut_write(p, (&mut perm), 5)

Solution: Support in progress for attribute-based syntax

#[with_ghost_arg(Tracked(perm): Tracked<&PointsToRaw>)]
pub unsafe fn add<T>(ptr: *const T, count: usize) -> xconst T

19

Challenge #3: Ergonomically Incorporating
Spec/Proof Code into Existing Rust Code

Need to do this in a way that still enables type-checking,
so we can keep borrow-checking our permissions

Results

B Verified

. Specified
. Unspecified

[Vec: :new]

[RawVeé::new]

/\

[str::run_utf8_validation:

[str::split_at_unchecked :

[str::next_code_point_verus

~

Cap::new_
unchecked

Unique::from

[:Alignméht::of] [RawVecInner::new_in‘
_non_null J

Alignment: :new

J

A\ 4

—

[

NonNull: :without
_provenance

|

p
usize::is_power

_of_two

\

~\

Alignment::

4\

NonZero: :get
[J

ptr::without
_provenance

|

as_nonzero

(s

/

J

\ 4

\ 4

[usize::count_one

\ 4

: N
transmute_ ptr::without
S] unchecked: : _provenance_
<NonZero<T>, T> mut

J

[intrinsics::ctpo

transmute: :<Alignment,
NonZero<usize>>

| |

VAR

transmute: :<usize,
xmut T>

[

21

Results

assert(ch == (((x & 0x07) as u32) << 18) |
(((y & 0x3f) as u32) << 12) |
(((z & 0x3f) as u32) << 6) |
((w & 0x3f) as u32)) by (bit_vector)
requires
x >= 0xF0,

init == (x & Ox7Fu8 >> (2 as u8)) as u32,
y_z == (((y & 0b@011_1111) as u32) << 6) | (z & 0b0011_1111) as u32,
ch == (init & 7) << 18 | ((y_z << 6) | (w & ©b0011_1111) as u32),

Elanor Tang
elanor@cmu.edu

Reca p Thank you!

* Rely on Rust’s borrow-checker and ownership - - - - - __
ghost types.

e Straightforward pointer provenance model. Rust borrow-

* Capable of verifying complex, real-world code. checker+SMT

__________________ ~
RawVec: :new ‘/ \
*
r:"mutT
[Alignment: o [RawVecInner::new_in] | pt Ut |
Ton . I value: T l
Unique::from Cap::new_ NonNull: :without |
_ _non_null unchecked _provenance | {‘---------------'----\I |
(L Atignment::new] , l .1 alloc_start: usize 1,
| ptr::without provenance. 1 1
usize::is_power Alignment:: [NonZero :get | _provenance I ! a“oc len th' USize 1]
| \ L amocShg Uusize A
| transmute ([ptr::without) < A
[usize::count ones] unchecked _prOVenanCe_ ——————————————————
I = <NonZero<T>, T> L mut)
intrinsics::ctpop] - -)
transmute::<Alignment, transmute::<usize,
NonZero<usize>> *mut T> J

This materialis based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE2140739. Any opinions, findings,

conclusions, orrecommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 23

